
IJSRSET184225 | Accepted : 15 Jan 2018 | Published 22 Jan 2018 | January-February-2018 [(4)2 : 138-144]

© 2018 IJSRSET | Volume 4 | Issue 2 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

National Conference on Advanced Research Trends in Information and

 Computing Technologies (NCARTICT-2018), Department of IT, L. D. College of Engineering,

Ahmedabad, Gujarat, India In association with

International Journal of Scientific Research in Science, Engineering and Technology

138

FEA-HUIM: Fast and Efficient Algorithm for High Utility Item-

Set Mining Using Novel Data Structure and Pruning Strategy
Suresh B. Patel

1
, Mahendra N. Patel

2
, Dr. S. M. Shah

3

1
PG Scholar, Computer Engineering Department, Government Engineering College, Modasa, Gujarat, India

2
PG Scholar, Computer Engineering Department, Government Engineering College, Modasa, Gujarat, India

3
Computer Engineering Department, Government Engineering College, Modasa, Gujarat, India

ABSTRACT

The aim is to recognize the item sets from transaction databases that direct the high profit of the business. It

identifies groups of items that are brought together that earn a high profit. It can help the owner to earn more by

promoting the sales of high utility items, so High Utility mining has attracted significant attention from the

researchers. A number of algorithms have been designed to mine high-utility item-sets using various approaches and

various data structures. However, it is necessary to improve the existing methods in terms of execution time and

memory consumption. All previous high utility item-set mining algorithms like two-phase, HUI-Miner, FHM,

mHUI-Miner scan the database multiple times. From the observation that we identified the performance of the

algorithms can be improved by reducing the database scanning frequency and cost. In previous algorithms like HUI-

Miner and mHUI-Miner, performs a time-consuming utility lists join operation on item-sets. In this research we

propose a novel data structure Item Utility Matrix with Index vector and efficient procedure to join the utility list.

We also propose a transaction aggregation to reduce the size of utility list. Our proposed algorithm outperforms the

previous methods in execution time required.

Keywords: Data Mining, High Utility Item-set, Transaction Weighted Utility, Item Utility Matrix, Index Vector.

I. INTRODUCTION

In recent days, there is rapid growth in producing data in

the world. The same conventional methods and

processing power of assessing and examining the data

do not follow this rapid growth. Due to this limitation, a

large amount of data is still kept without used. Data

mining is a research area that tries to overcome these

problems and proposes some solutions for the extraction

of important and useful information from this hugeset of

data. The process for extracting useful information from

large amount of data is known as Data Mining. In other

words, we can say that data mining is the procedure of

mining knowledge from data.

The rapid growth of database methods facilitates the

store and use of large data from corporate sector,

government offices, and scientific organizations. How to

find out important and useful information from various

databases has received significant attention, which

results in the sharp rise of related research areas. Among

this area, the high-utility item set mining problem is one

of the most important, and it is derived from the well-

known problem frequent item-set mining problem[1].

Frequent Item-set Mining (FIM) is a famous data mining

task. For a transaction database, FIM consists of finding

out frequent item-sets, i.e., set of items (Item-sets)

appearing frequently in the transaction database[2][3],

FIM is crucial to many applications. A conventional

application of FIM is market-basket analysis. In this

context, frequent item-sets are showing and then used by

retail store managers to co-promote frequently

purchased item-sets[2]. Though much work has been

done on FIM, a fundamental limitation of FIM is, it

assumes that in each transaction only item can appear or

not regardless of number of quantity and all items have

the same importance (weight, unit profit or value). These

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

139

two things do not hold in the real world. For example,

consider a database of customer„s transactions. It is

casual that a customer will buy one or more unit of the

same item (e.g., a customer may buy several pouches of

milk), and all the products do not have the same profit

(e.g., selling a shampoo earn more profit than selling a

juice-bottle). Conventional FIM algorithms do not

consider purchase quantities and profit of items. Thus,

FIM algorithm would not consider this useful

information and only find frequent item-sets, rather than

finding those earning a more profit. As a result, many

monotonous frequent item-sets generating a low profit

may be discovered, and many rare item-sets yielding a

high profit may be missed. To address this type of issue,

the problem of High-Utility Item-set Mining (HUIM)

has been defined [4][5][6] as “Derived the item sets

from the transaction database yields the high profit” As

opposite to FIM[2][3], HUIM considers the item

quantity and each item profit(e.g., unit profit). The

objective of HUIM is to find out the item-sets having a

high-utility (a high importance, such as a high profit),

that is High-Utility Item-sets. The High-utility Item-set

mining has been developed as an significant research

area of data mining in current years and has inspired

several other important data mining tasks such as high-

utility sequential pattern mining[4].

II. PROBLEM BACKGROUND

A. Preliminary

Let I = {i1,i2,i3,…in} be a set of single items. A

transaction database DB that consists of a transaction

table and a utility table. The transaction table contains a

set of transactions {T1,T2,T3,….,Tm}. Where Tid is the

unique transaction identifier for each transaction. Each

transaction is a subset of I and counts value is associated

with each item in the transaction. The utility table stores

all the utility values for each item i in I.

Table 1. Transaction Database

Tid Transactions

T1 c 2 b 1 e 1 - -

T2 a 3 e 2 g 1 b 4 -

T3 a 1 b 2 c 3 d 4 e 5

T4 f 3 g 1 - - -

T5 b 1 a 1 d 1 - -

Table 2. Utility table

Item a b C d e f g

Profit 5 1 3 4 2 1 2

Definition 1: Transaction Database.

Let I be an item-set (symbols). A transaction set in

transaction database DB = {T1, T2, T3,…Tm} such that

for all individual transaction Ti , Ti ∈ I and Ti

transaction has a unique identifier i called its Transaction

id. The Profit value p (i) in Utility Table associated with

i ∈ I is known as an external utility. For each transaction

Ti in transaction table such that i ∈ T, a positive number

q (i, Ti) is known as the internal utility of i (e.g. In

Transaction Ti it is the purchase quantity of item i).

Example 1. Consider the database in Table 1 & 2. This

database has five transactions like T1, T2, T3, T4, and

T5. In T2 Transaction items a, e, g, b exist with an

internal utility 3, 2, 1 and 4 respectively. The external

utility of these items is 5, 2, 2 and 1 respectively.

Definition 2: Utility of an Item in a Transaction.

In the transaction Ti the utility of an item i is u(i, Ti) =

q(i, Ti) × p(i)

Example 2. The utility of item a in T2 is u (a, T2) = 5 ×

3 = 15.

Definition 3: Utility of an Item-set in a Transaction.

The utility of an item-set X (a group of items X ⊆ I) in a

transaction Ti is denoted as u(X, Ti) and defined as u (X,

Ti) = ∑ i∈x u(i, Ti)

Example 3. The utility of the item-set {a, c} in T2 is u

((a, e), T3) = u (a, T3) + u (e, T3) = 1 × 5 + 5 × 2 = 10.

Definition 4: Utility of an Item-set in a Database.

The utility of an item-set X is denoted as u(X) and

defined as u(X) = ∑ Ti∈g(x) u(X, Ti), where g(X) is the set

of transactions containing X.

Example 4. The utility of the item-set {b, e} in database

is u(b, e) = u((b,e),T1) + u((b,e),T2) + u((b,e),T3)

 = u(b,T1) + u(e,T1) + u(b,T2) +

 u(e,T2) + u(b,T3) + u(e,T3)

 = 1 + 2 + 4 + 4 + 2 + 10

 = 23

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

140

Definition 5: Problem Definition.

The problem of high-utility item-set mining is to

discover all high-utility item-sets. An item-set X is a

high-utility item-set if its utility u(X) is no less than a

user-specified minimum utility threshold MinUtil given

by the user. Otherwise, X is a low-utility item-set.

High Utility itemset = X ⊆ I where u(X) ≥ MinUtil

Example 5. itemset X = (b,e) and MinUtil=15. u(b,e) is

23 greater than MinUtil so X is high utility itemset.

B. Challenges in HUIM

The problem of HUIM is widely accepted as, tougher

than the problem of FIM. In FIM, the downward-

closure-property states that the frequency (support) of an

item-set is anti-monotonic [2], Means, supersets of an

infrequent item-set are infrequent and subsets of a

frequent item-set are frequent. This property is called the

Apriori property. It is very powerful to trim (prune) the

search space. But in High-Utility-Item-set-Mining, the

utility of an item-set is neither monotonic nor anti-

monotonic. That is, a High Utility Item-set may have a

superset or a subset having a lesser, equal or more utility

[7] [14] [15] [16]. Thus, methods that have been used in

FIM to trim the search space based on the downward-

closure-property of the support cannot be directly

applied in High-Utility-Item-set-Mining, for trim the

search space.

For example, consider the following transaction

database and utility table

Table 3. Transaction Database

Transaction a b c d

T1 3 0 2 4

T2 0 4 1 0

T3 4 1 3 1

T4 1 1 0 1

T5 0 6 2 0

Table 4. Utility Table

Item a b c D

Profit 5 7 2 1

Consider User Specific threshold MinUtil = 45. The

utility of item set X = {a, c, d} is 50 which is more than

the MinUtil so X is the high utility item set. Another

itemset Y={c}. utility of Y is 18 less than MinUtil so

Y is not high utility itemset event Y is subset of X. now

consider itemset P={a,b,d} Utility of P is 41 ≤ MinUtil

and subset of P is Q={b} utility of Q is 84 >= MinUtil

so P is not a high utility itemset even it is superset of

high utility itemset Q . so more challenges task in the

problem of HUIM is the prune the search space.

In the problem of HUIM uses a measure called the

Transaction-Weighted-Utility (TWU), which is an upper

bound of transaction utility of item-set and it is an anti-

monotonic.

Definition 6: Transaction Utility

The transaction utility of a transaction Ti is the

summation of the utilities of every item in transaction Ti

that is TU(Ti) = ∑ i ∈ Ti u(i, Ti). In another word, the

transaction utility of a transaction is the total profit made

by that transaction.

Example 6. The Transaction utility of transaction T1 is

TU (T1) = u (c, T1) + u (b, T1) + u (e, T1)

 = 6 + 1 + 2 = 9

Definition 7: Transaction Weighted Utility of an

Item-set.

Let an item-set X. The Transaction-Weighted-Utility

(TWU) of X is the sum of the transaction utilities TU of

transactions Ti containing X and is denoted as TWU(X).

Formally, TWU(X) = ∑ x ∈ Ti TU(Ti). The TWU

signifies the total profit made by the transactions holding

the item-set X.

Example 7. The TWU(b) = TU(T1) + TU(T2) + TU(T3)

+ TU(T5)

 = 9 + 25 + 42 + 10

 = 86

The Transaction-Weighted-Utility of an item-set is the

overestimation of the actual utility of an item-set,

TWU(X) ≥ u(X) utility. TWU is anti-monotonic, i.e.

TWU(X) ≥ TWU(Y) if X ⊂ Y, means that if the TWU

of item-set X is smaller than the user specify threshold,

there is no need to consider all the supersets of X,

because the TWU of the supersets of X are definitely to

be smaller as well.

III. RELATED WORK

Much research has been done in the area of -High Utility

Item-set Mining which is described here. In previous

research, a variety of algorithms for finding high utility

item-set like Two-Phase [4], UP-Growth [16], HUI-

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

141

Miner [15], FHM [6], mHUI-Miner [17] etc from

transaction database have been proposed.

In 2005, Ying Liu proposed a two-phase algorithm [4]

that find out the high utility item-set in two phase.

Phase-1 calculates the TWU transaction weighted utility

of each item and maintains a Transaction-weighted-

Downward-Closure Property. Thus, only the group of

high transaction weighted utility item-sets are appended

into the candidate set at each level during the level-wise

search. Phase I sometimes overestimate some low utility

item-sets, but it never underestimates any item-sets. In

phase II, overestimated item-sets are filtered out for that

one more time database scan is performed. This

algorithm demands multiple times databases scan and

generates a large number of candidate-sets because of a

level-wise method.

In 2010, Vincent S. Tseng proposed a UP-Growth [16]

that reduce the number of candidate item-set UP-Growth

uses four strategies, Discarding-Global-Unpromising

items (DGU), Decreasing-Global-Node utilities (DGN),

Discarding-Local-Unpromising items (DLU), and

Decreasing-Local -Node utilities (DLN). Also, it defines

a tree data structure, called UP-Tree, with two times

database scans and conducts mining high utility item-

sets. It calculates the TWU of every item by first time

scanning the database and then removes the item having

low TWU than MinUtil from each transaction and

transaction are arranged TWU descending order. Then

the transactions are appended to the UP-Tree. Also

applied DGU and DGN are for reducing overestimated

utilities in the same stage. After that, high utility item-

sets are discovered from the UP –Tree with applying

DLU and DLN. The proposed method performs in three

parts: (1) Construction of Tree “UP- Tree” (2) Discover

potential high utility item-sets from the “UP-Tree” by

UP-Growth (3) Identification of actual high utility item-

sets from the set of potential high utility item-sets.

Mengchi Liu proposed an HUI-Miner (High Utility

Itemset Miner) [15] that discovers the high utility item-

set without generating candidate item-set. They

proposed a new data structure called utility-list which

stores the utility of item-sets and also stores the

heuristics information for the decision of pruning.

Initially, it creates utility list for 1-itemset. Then, HUI-

Miner algorithm constructs utility list for k-itemset

recursively by the pairing of utility lists of k-1 item-set.

For mining high utility item-set, each utility list for an

item-set contains transaction id for all transaction

containing the item-set, utility of the item-set in the

transaction and the remaining utility value.

In 2014, Philippe Fournier-Viger proposed an FHM[6]

that extends the Hui-Miner Algorithm. This is Depth

First Search Algorithm. It uses the utility-lists to

calculate the actual utility of itemsets. This algorithm

proposed a novel data structure named EUCP (Estimated

Utility Co-occurrence Pruning) to minimize the number

of joins operations of utility list. Estimated Utility Co-

Occurrence Structure (EUCS) maintains the transaction

weighted utility (TWU) of all 2-itemsets. It is built

during the initial database scans. EUCS defined as

triangular matrix or hash-map. The memory usage of the

EUCS structure is small. FHM is faster than HUI -Miner.

Recently in 2017, Alex Yuxuan Peng proposed a mHUI-

Miner [17] used a prefix tree structure to avoid

construction of unnecessary utility-lists. A pleasant

property of prefix tree structure is that a path in the tree

corresponds to a database transaction. mHUI-Miner

creates a local prefix tree and extends an itemset by

joining the utility list. It maintains the utility information

in the utility list.

To improve the performance of the mHUI-Miner

algorithm by reducing the database scanning cost and

frequency. It also improves the performance by

proposing the efficient algorithm for joining the Utility-

List.

IV. PROPOSED WORK: FEA-HUIM

Figure 1. Proposed Flowchart of FEA-HUIM

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

142

Figure 2. Proposed Flowchart of Mining Procedure

Figure 3. Proposed Flowchart of Construct Procedure

In this section, our proposed algorithm FEA-HUIM is

presented. It takes the transaction database and MinUtil:

user-specific threshold. The algorithm first scans the

database and calculates TWU of each individual item.

Simultaneously stores the database into our novel data

structure IUM: Item Utility Matrix and creates index

vector. The index vector stores the item column number

from the IUM as TWU descending order. The IUM

performs the aggregation of the similar transaction. Then

creates a global prefix tree. From the global prefix tree,

the Mining algorithm discovers the High Utility Item-set.

The mining procedure also uses the construction

procedure for joining the utility list of item-sets. We also

propose the efficient construct algorithm. Our proposed

flow chart as below in Figure 1 to 3.

Now we discuss our proposed system with an example,

Consider the transaction database and utility table

mentioned in table 1 and table 2 respectively. Then we

scan the database and create our novel data structure

IUM and index vector as mentioned below.in IUM first

row specifies the items and second-row store the TWU

of each item. Create a utility list of each item. The utility

list maintains the utility information. Utility list structure

is as <Tid, iutil,rutil>. The iutil field store the utility of

item-set from the transaction Tid, rutil field store the

utility of remaining items from the transaction.

Table 5. Item Utility Matrix Table 6. Index Vector

Table 7. Utility List of 1-itemset

In Item Utility Matrix (IUM) merge the similar

transaction as performing the sum of item utility. Then

read the transaction and insert into the global prefix tree

as per index vector order. i.e first read the item specify

by column number in the index vector first position.

Then select the next item specified by the column

number in the index vector second position as so on. In

our example for transaction T1 inset the items b-e-c in

order. Same way inserts all transaction in the global tree.

Also, maintain the header table as below figure.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

143

Figure 4. Global Tree

In the next step select the item from the bottom of the

header table i.e c and create a local prefix tree and its

header table then recursively add the item in the current

item set if its total utility is larger than the MinUtil

threshold. i.e after c fetch the item d from the bottom of

the header table and create a local prefix tree, header

table, utility list by joining the utility list of item-set c

and utility list of item d.

Similarly, perform the same procedure for all the

remaining items from the header table of global prefix

tree T. Finally discover all the high utility item-sets are

{cdea} utility is 40, {cdeab} Utility is 42 and {eab}

Utility is 40.

Figure 5. local prefix tree and header table of „c‟

Figure 6. local prefix tree, header table and Utility List

of „cd‟

V. COMPARISON AND DISCUSSION

In the previous research like Two-Phase, FHM, mHUI-

Miner scan the database two times. Database scanning

cost is high so it consumes must time for database

scanning. Two-Phase, Up-Growth algorithm generates a

number of candidate itemset then find out the actual

high utility item set so it degrades the performance of

the algorithms. In HUI-Miner, candidate item set is not

generated but it performs the costly join operation of

utility list. Recently, mHUI-Miner has been proposed

that resolve the problem of candidate set generation and

minimize the number of the join operation. For the

problem of High Utility Item-set Mining mHUI- Miner

outperforms the previous. Still, in mHUI-Miner database

scan multiple times so it is time-consuming while in our

proposed algorithm it scans the database only once. In

mHUI-Miner to generate global tree perform the sorting

operation on items for each transaction to insert. While

in our proposed method it is just read the item as per

order mentioned by index vector. It also observed that in

mHUI-Miner construct procedure each entry in the one

utility list is compared with all entry of another utility

list so the complexity of construct procedure in the

mHUI-Miner is the O (mn) where m & n is the number

of transaction entries in the utility list of item-set x and

item-set y. But due to transaction aggregation the size of

utility list can be reduced, so the complexity of our

proposed construct algorithm is at most O (m + n).

Roughly the overall time complexity of mHUI-Miner

algorithm is O(2TdbI
2
mn) while over proposed algorithm

is O(TdbI
2
(m+n)) where Tdb is the database scanning cost,

I is the number of items, m & n are the number of

transaction entries in utility lists. From the above fact

that the proposed algorithm is faster than the mHUI-

Miner.

The proposed algorithm yet to be implemented in java

platform and will perform the experiment on Retails,

Chainstore, Accident, Mushroom datasets for various

utility threshold. It will prove that our proposed

algorithm is better in terms of execution time than the

previous mHUI-Miner.

VI. CONCLUSION

We find out that most of HUIM algorithm consume the

time for database scanning, unnecessary generating

candidate set. Some algorithms consume memory and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

144

time for construction of un-necessary utility list and

joining this utility lists. Performance of the High Utility

Item-set mining algorithm can be improved by, reducing

database scanning cost, frequency, and efficient Pruning

Strategy. We propose the algorithm that scans the

database only once. Also, propose the transaction

aggregation that reduces the size of utility list and fast

construction operation for joining the utility list.

Roughly the overall time complexity of mHUI-Miner

algorithm is O(2TdbI
2
mn) while over proposed algorithm

is O(TdbI
2
(m+n)) where Tdb is the database scanning cost,

I is the number of items, m & n are the number of

transaction entries in utility lists. From the said

theoretical analysis we conclude that our proposed

algorithm outperforms the previous algorithm with

respect to execution time.

VII. REFERENCES

[1]. J. F. R. Ceglar, Aaron, "Association mining," in

ACM Computing Surveys (CSUR), 2006, pp. 5–5.

[2]. S. R. Agrawal R, "Fast algorithms for mining

association rules in large databases," in

Proceedings of the 20th international conference

on very large databases, 1994, pp. 487–499.

[3]. & M. Han, J., Pei, J., Yin, Y., "Mining frequent

patterns without candidate generation: A frequent-

pattern tree approach," Data Min. Knowl. Discov.,

vol. 8, no. 1, pp. 53–87, 2004.

[4]. Y. Liu, W. Liao, and A. Choudhary, "A Two-

Phase Algorithm for Fast Discovery of High

Utility Itemsets," in Proceedings of the 16th ACM

SIGKDD international conference on Knowledge

discovery and data mining, 2010, pp. 253–262.

[5]. M. Liu and J. Qu, "Mining High Utility Itemsets

without Candidate Generation Categories and

Subject Descriptors," in Proceedings of the 21st

ACM international conference on Information and

knowledge management, 2012, pp. 55–64.

[6]. P. Fournier-Viger, C. W. Wu, S. Zida, and V. S.

Tseng, "FHM: Faster high-utility itemset mining

using estimated utility co-occurrence pruning,"

Springer, Cham. pp. 83–92, 2014.

[7]. V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P.

S. Yu, "Efficient Algorithms for Mining High

Utility Itemsets from Transactional Databases,"

IEEE Trans. Knowl. Data Eng., vol. 28, no. 1, pp.

54–67, 2016.

[8]. J. B. Ahmed CF, Tanbeer SK, "Mining high utility

web access sequences in dynamic web log data,"

in Proceedings of the international conference on

software engineering artificial intelligence

networking and parallel/distributed computing,

IEEE, London, UK, 2010, pp. 76–81.

[9]. T. V. Liu Y, Cheng C, "Mining differential top-k

co-expression patterns from time course

comparative gene expression datasets," BMC

Bioinform, vol. 14. p. 230, 2013.

[10]. Q. Li, "Data Mining Association Analysis

Algorithm." Harbin: Harbin Engineering

University, 2010.

[11]. Y. Q. Lin, "A Review of Association Rules

Mining Algorithm[J]," Softw. Guid., vol. 11, pp.

27–29, 2012.

[12]. Z. W. Chi, X., & Fang, "Review of association

rule mining algorithm in data mining," in In

Communication Software and Networks (ICCSN),

2011 IEEE 3rd International Conference on, 2011,

pp. 512–516.

[13]. Y. D. (2001) Pei J, Han J, Lu H, Nishio S, Tang S,

"H-Mine: hyper-structure mining of frequent

patterns in large databases.," in In: Proceedings of

the 2001 IEEE international conference on data

mining, IEEE, San Jose, CA, 2001, pp. 441–448.

[14]. C. F. Ahmed, S. K. Tanbeer, B. Jeong, and Y.

Lee, "Mining High Utility Patterns in Incremental

Databases," IEEE Trans. Knowl. DATA Eng., vol.

21, no. 12, pp. 656–663, 2009.

[15]. M. Liu and J. Qu, "Mining High Utility Itemsets

without Candidate Generation Categories and

Subject Descriptors," in Proceedings of the 21st

ACM international conference on Information and

knowledge management, 2012, pp. 55–64.

[16]. V. Tseng, C. Wu, B. Shie, and P. Yu, "UP-

Growth: an efficient algorithm for high utility

itemset mining," in Proceedings of the 16th ACM

SIGKDD international conference on Knowledge

discovery and data mining, 2010, pp. 253–262.

[17]. P. R. Alex Yuxuan Peng, Yun Sing Koh,

"mHUIMiner: A Fast High Utility Itemset Mining

Algorithm for Sparse Datasets," in Pacific-Asia

Conference on Knowledge Discovery and Data

Mining, 2017, pp. 196–207.

