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ABSTRACT 
 

The aim is to recognize the item sets from transaction databases that direct the high profit of the business. It 

identifies groups of items that are brought together that earn a high profit. It can help the owner to earn more by 

promoting the sales of high utility items, so High Utility mining has attracted significant attention from the 

researchers. A number of algorithms have been designed to mine high-utility item-sets using various approaches and 

various data structures. However, it is necessary to improve the existing methods in terms of execution time and 

memory consumption. All previous high utility item-set mining algorithms like two-phase, HUI-Miner, FHM, 

mHUI-Miner scan the database multiple times. From the observation that we identified the performance of the 

algorithms can be improved by reducing the database scanning frequency and cost. In previous algorithms like HUI-

Miner and mHUI-Miner, performs a time-consuming utility lists join operation on item-sets. In this research we 

propose a novel data structure Item Utility Matrix with Index vector and efficient procedure to join the utility list. 

We also propose a transaction aggregation to reduce the size of utility list. Our proposed algorithm outperforms the 

previous methods in execution time required. 

Keywords: Data Mining, High Utility Item-set, Transaction Weighted Utility, Item Utility Matrix, Index Vector. 

 

I. INTRODUCTION 

 

In recent days, there is rapid growth in producing data in 

the world. The same conventional methods and 

processing power of assessing and examining the data 

do not follow this rapid growth. Due to this limitation, a 

large amount of data is still kept without used. Data 

mining is a research area that tries to overcome these 

problems and proposes some solutions for the extraction 

of important and useful information from this hugeset of 

data. The process for extracting useful information from 

large amount of data is known as Data Mining. In other 

words, we can say that data mining is the procedure of 

mining knowledge from data. 

 

The rapid growth of database methods facilitates the 

store and use of large data from corporate sector, 

government offices, and scientific organizations. How to 

find out important and useful information from various 

databases has received significant attention, which 

results in the sharp rise of related research areas. Among 

this area, the high-utility item set mining problem is one 

of the most important, and it is derived from the well-

known problem frequent item-set mining problem[1]. 

 

Frequent Item-set Mining (FIM) is a famous data mining 

task. For a transaction database, FIM consists of finding 

out frequent item-sets, i.e., set of items (Item-sets) 

appearing frequently in the transaction database[2][3], 

FIM is crucial to many applications. A conventional 

application of FIM is market-basket analysis. In this 

context, frequent item-sets are showing and then used by 

retail store managers to co-promote frequently 

purchased item-sets[2]. Though much work has been 

done on FIM, a fundamental limitation of FIM is, it 

assumes that in each transaction only item can appear or 

not regardless of number of quantity and all items have 

the same importance (weight, unit profit or value). These 
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two things do not hold in the real world. For example, 

consider a database of customer„s transactions. It is 

casual that a customer will buy one or more unit of the 

same item (e.g., a customer may buy several pouches of 

milk), and all the products do not have the same profit 

(e.g., selling a shampoo earn more profit than selling a 

juice-bottle). Conventional FIM algorithms do not 

consider purchase quantities and profit of items. Thus, 

FIM algorithm would not consider this useful 

information and only find frequent item-sets, rather than 

finding those earning a more profit. As a result, many 

monotonous frequent item-sets generating a low profit 

may be discovered, and many rare item-sets yielding a 

high profit may be missed. To address this type of  issue, 

the problem of High-Utility Item-set Mining (HUIM) 

has been defined [4][5][6] as “Derived the item sets 

from the transaction database yields the high profit” As 

opposite to FIM[2][3], HUIM considers the item 

quantity and each item profit(e.g., unit profit). The 

objective of HUIM is to find out the item-sets having a 

high-utility (a high importance, such as a high profit), 

that is High-Utility Item-sets. The High-utility Item-set 

mining has been developed as an significant research 

area of data mining in current years and has inspired 

several other important data mining tasks such as high-

utility sequential pattern mining[4]. 

 

II. PROBLEM BACKGROUND 

 

A. Preliminary 

Let I = {i1,i2,i3,…in} be a set of single items. A 

transaction database DB that consists of a transaction 

table and a utility table. The transaction table contains a 

set of transactions {T1,T2,T3,….,Tm}. Where Tid is the 

unique transaction identifier for each transaction. Each 

transaction is a subset of I and counts value is associated 

with each item in the transaction. The utility table stores 

all the utility values for each item i in I. 

 

Table 1. Transaction Database 

Tid Transactions 

T1 c  2 b  1  e  1 - - 

T2 a  3 e  2 g  1 b  4 - 

T3 a  1 b  2 c  3 d  4 e  5 

T4 f  3 g  1 - - - 

T5 b 1 a  1 d  1 - - 

 
 

 

 

Table 2. Utility table 

Item a b C d e f g 

Profit 5 1 3 4 2 1 2 

 

Definition 1: Transaction Database. 

Let I be an item-set (symbols). A transaction set in 

transaction database DB = {T1, T2, T3,…Tm} such that 

for all individual transaction Ti , Ti ∈ I and Ti 

transaction has a unique identifier i called its Transaction 

id. The Profit value p (i) in Utility Table associated with 

i ∈ I is known as an external utility. For each transaction 

Ti in transaction table such that i ∈ T, a positive number 

q (i, Ti) is known as the internal utility of i (e.g. In 

Transaction Ti it is the purchase quantity of item i).   

 

Example 1. Consider the database in Table 1 & 2. This 

database has five transactions like T1, T2, T3, T4, and 

T5. In T2 Transaction items a, e, g, b exist with an 

internal utility 3, 2, 1 and 4 respectively.  The external 

utility of these items is 5, 2, 2 and 1 respectively. 

 

Definition 2: Utility of an Item in a Transaction.  

In the transaction Ti the utility of an item i is u(i, Ti) =  

q(i, Ti) × p(i) 

 

Example 2. The utility of item a in T2 is u (a, T2) = 5 × 

3 = 15. 

 

Definition 3: Utility of an Item-set in a Transaction.  

The utility of an item-set X (a group of items X ⊆ I) in a 

transaction Ti is denoted as u(X, Ti) and defined as u (X, 

Ti) = ∑ i∈x  u( i, Ti ) 

 

Example 3. The utility of the item-set {a, c} in T2 is u 

((a, e), T3) = u (a, T3) + u (e, T3) = 1 × 5 + 5 × 2 = 10. 

 

Definition 4: Utility of an Item-set in a Database. 

The utility of an item-set X is denoted as u(X) and 

defined as u(X) = ∑ Ti∈g(x) u(X, Ti ), where g(X) is the set 

of transactions containing X.  

 

Example 4. The utility of the item-set {b, e} in database 

is u(b, e) = u((b,e),T1) + u((b,e),T2) + u((b,e),T3)  

    = u(b,T1) + u(e,T1) + u(b,T2) + 

               u(e,T2) + u(b,T3) + u(e,T3) 

    = 1 + 2 + 4 + 4 + 2 + 10 

    = 23 
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Definition 5: Problem Definition. 

The problem of high-utility item-set mining is to 

discover all high-utility item-sets. An item-set X is a 

high-utility item-set if its utility u(X) is no less than a 

user-specified minimum utility threshold MinUtil given 

by the user. Otherwise, X is a low-utility item-set.  

High Utility itemset = X ⊆ I where u(X) ≥ MinUtil  

 

Example 5.  itemset X = (b,e) and MinUtil=15. u(b,e) is 

23 greater than MinUtil so X is high utility itemset. 

 

B. Challenges in HUIM  

The problem of HUIM is widely accepted as, tougher 

than the problem of FIM. In FIM, the downward-

closure-property states that the frequency (support) of an 

item-set is anti-monotonic [2], Means, supersets of an 

infrequent item-set are infrequent and subsets of a 

frequent item-set are frequent. This property is called the 

Apriori property. It is very powerful to trim (prune) the 

search space. But in High-Utility-Item-set-Mining, the 

utility of an item-set is neither monotonic nor anti-

monotonic. That is, a High Utility Item-set may have a 

superset or a subset having a lesser, equal or more utility 

[7] [14] [15] [16]. Thus, methods that have been used in 

FIM to trim the search space based on the downward-

closure-property of the support cannot be directly 

applied in High-Utility-Item-set-Mining, for trim the 

search space. 

 

For example, consider the following transaction 

database and utility table  

 

Table 3. Transaction Database 

Transaction  a  b  c  d  

T1  3  0  2  4  

T2  0  4  1  0  

T3  4  1  3  1  

T4  1  1  0  1  

T5  0  6  2  0  

 

Table 4. Utility Table 

Item a b c D 

Profit 5 7 2 1 

 

Consider User Specific threshold MinUtil = 45. The 

utility of item set X = {a, c, d} is 50 which is more than 

the MinUtil so X is the high utility item set.  Another 

itemset Y={c}.  utility of  Y  is  18 less than  MinUtil  so 

Y is not high utility itemset event  Y is subset of X. now 

consider itemset P={a,b,d} Utility of P is  41 ≤  MinUtil  

and subset of P is Q={b} utility of Q is 84 >= MinUtil 

so P is not a  high utility itemset even it is superset of 

high utility itemset Q . so more challenges task in the 

problem of HUIM is the prune the search space. 

In the problem of HUIM uses a measure called the 

Transaction-Weighted-Utility (TWU), which is an upper 

bound of transaction utility of item-set and it is an anti-

monotonic. 

 

Definition 6: Transaction Utility 

The transaction utility of a transaction Ti is the 

summation of the utilities of every item in transaction Ti 

that is  TU(Ti)  = ∑ i ∈  Ti  u( i, Ti). In another word, the 

transaction utility of a transaction is the total profit made 

by that transaction.  

 

Example 6. The Transaction utility of transaction T1 is 

TU (T1) = u (c, T1) + u (b, T1) + u (e, T1) 

       = 6 + 1 + 2 = 9  

 

Definition 7: Transaction Weighted Utility of an 

Item-set. 

Let an item-set X. The Transaction-Weighted-Utility 

(TWU) of X is the sum of the transaction utilities TU of 

transactions Ti containing X and is denoted as TWU(X). 

Formally, TWU(X) = ∑ x ∈ Ti  TU(Ti).  The TWU 

signifies the total profit made by the transactions holding 

the item-set X.  

 

Example 7. The TWU(b) = TU(T1) + TU(T2) + TU(T3) 

+ TU(T5) 

     = 9 + 25 + 42 + 10 

     = 86  

 

The Transaction-Weighted-Utility of an item-set is the 

overestimation of the actual utility of an item-set, 

TWU(X) ≥ u(X) utility. TWU is anti-monotonic, i.e. 

TWU(X) ≥ TWU(Y) if X ⊂ Y, means that if the TWU 

of item-set X is smaller than the user specify threshold, 

there is no need to consider all the supersets of X, 

because the TWU of the supersets of X are  definitely to 

be smaller as well. 

III. RELATED WORK 

 

Much research has been done in the area of -High Utility 

Item-set Mining which is described here. In previous 

research, a variety of algorithms for finding high utility 

item-set like Two-Phase [4], UP-Growth [16], HUI-
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Miner [15], FHM [6], mHUI-Miner [17] etc from 

transaction database have been proposed. 

 

In 2005, Ying Liu proposed a two-phase algorithm [4] 

that find out the high utility item-set in two phase.  

Phase-1 calculates the TWU transaction weighted utility 

of each item and maintains a Transaction-weighted-

Downward-Closure Property. Thus, only the group of 

high transaction weighted utility item-sets are appended 

into the candidate set at each level during the level-wise 

search. Phase I sometimes overestimate some low utility 

item-sets, but it never underestimates any item-sets. In 

phase II, overestimated item-sets are filtered out for that 

one more time database scan is performed. This 

algorithm demands multiple times databases scan and 

generates a large number of candidate-sets because of a 

level-wise method.  

 

In 2010, Vincent S. Tseng proposed a UP-Growth [16] 

that reduce the number of candidate item-set UP-Growth 

uses four strategies, Discarding-Global-Unpromising 

items (DGU), Decreasing-Global-Node utilities (DGN), 

Discarding-Local-Unpromising items (DLU), and 

Decreasing-Local -Node utilities (DLN). Also, it defines 

a tree data structure, called UP-Tree, with two times 

database scans and conducts mining high utility item-

sets. It calculates the TWU of every item by first time 

scanning the database and then removes the item having 

low TWU than MinUtil from each transaction and 

transaction are arranged TWU descending order. Then 

the transactions are appended to the UP-Tree. Also 

applied DGU and DGN are for reducing overestimated 

utilities in the same stage. After that, high utility item-

sets are discovered from the UP –Tree with applying 

DLU and DLN. The proposed method performs in three 

parts: (1) Construction of Tree “UP- Tree” (2) Discover 

potential high utility item-sets from the “UP-Tree” by 

UP-Growth (3) Identification of actual high utility item-

sets from the set of potential high utility item-sets. 

 

Mengchi Liu proposed an HUI-Miner (High Utility 

Itemset Miner) [15] that discovers the high utility item-

set without generating candidate item-set. They 

proposed a new data structure called utility-list which 

stores the utility of item-sets and also stores the 

heuristics information for the decision of pruning.  

Initially, it creates utility list for 1-itemset. Then, HUI-

Miner algorithm constructs utility list for k-itemset 

recursively by the pairing of utility lists of k-1 item-set. 

For mining high utility item-set, each utility list for an 

item-set contains transaction id for all transaction 

containing the item-set, utility of the item-set in the 

transaction and the remaining utility value.  

 

In 2014, Philippe Fournier-Viger proposed an FHM[6] 

that extends the Hui-Miner Algorithm. This is Depth 

First Search Algorithm. It uses the utility-lists to 

calculate the actual utility of itemsets. This algorithm 

proposed a novel data structure named EUCP (Estimated 

Utility Co-occurrence Pruning) to minimize the number 

of joins operations of utility list. Estimated Utility Co-

Occurrence Structure (EUCS) maintains the transaction 

weighted utility (TWU) of all 2-itemsets. It is built 

during the initial database scans. EUCS defined as 

triangular matrix or hash-map. The memory usage of the 

EUCS structure is small. FHM is faster than HUI -Miner. 

 

Recently in 2017, Alex Yuxuan Peng proposed a mHUI-

Miner [17] used a prefix tree structure to avoid 

construction of unnecessary utility-lists. A pleasant 

property of prefix tree structure is that a path in the tree 

corresponds to a database transaction. mHUI-Miner 

creates a local prefix tree and extends an itemset by 

joining the utility list. It maintains the utility information 

in the utility list. 

 

To improve the performance of the mHUI-Miner 

algorithm by reducing the database scanning cost and 

frequency.  It also improves the performance by 

proposing the efficient algorithm for joining the Utility-

List.  

IV. PROPOSED WORK: FEA-HUIM  

 
Figure 1. Proposed Flowchart of FEA-HUIM 
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Figure 2. Proposed Flowchart of Mining Procedure 

 

 
Figure 3. Proposed Flowchart of Construct Procedure 

 

In this section, our proposed algorithm FEA-HUIM is 

presented. It takes the transaction database and MinUtil: 

user-specific threshold. The algorithm first scans the 

database and calculates TWU of each individual item. 

Simultaneously stores the database into our novel data 

structure IUM: Item Utility Matrix and creates index 

vector. The index vector stores the item column number 

from the IUM as TWU descending order. The IUM 

performs the aggregation of the similar transaction.  Then 

creates a global prefix tree. From the global prefix tree, 

the Mining algorithm discovers the High Utility Item-set. 

The mining procedure also uses the construction 

procedure for joining the utility list of item-sets. We also 

propose the efficient construct algorithm. Our proposed 

flow chart as below in Figure 1 to 3. 

 

Now we discuss our proposed system with an example, 

Consider the transaction database and utility table 

mentioned in table 1 and table 2 respectively. Then we 

scan the database and create our novel data structure 

IUM and index vector as mentioned below.in IUM first 

row specifies the items and second-row store the TWU 

of each item. Create a utility list of each item. The utility 

list maintains the utility information. Utility list structure 

is as <Tid, iutil,rutil>. The iutil field store the utility of 

item-set from the transaction Tid, rutil field store the 

utility of remaining items from the transaction.    
 

Table 5. Item Utility Matrix        Table 6. Index Vector 
 

 
 

Table 7. Utility List of 1-itemset 

 
 

In Item Utility Matrix (IUM) merge the similar 

transaction as performing the sum of item utility. Then 

read the transaction and insert into the global prefix tree 

as per index vector order. i.e first read the item specify 

by column number in the index vector first position. 

Then select the next item specified by the column 

number in the index vector second position as so on. In 

our example for transaction T1 inset the items b-e-c in 

order. Same way inserts all transaction in the global tree. 

Also, maintain the header table as below figure. 
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Figure  4. Global Tree 

 

In the next step select the item from the bottom of the 

header table i.e c and create a local prefix tree and its 

header table then recursively add the item in the current 

item set if its total utility is larger than the MinUtil 

threshold. i.e after c fetch the item d from the bottom of 

the header table and create a local prefix tree, header 

table, utility list by joining the utility list of item-set c 

and utility list of item d. 

 

Similarly, perform the same procedure for all the 

remaining items from the header table of global prefix 

tree T. Finally discover all the high utility item-sets are 

{cdea} utility is 40, {cdeab} Utility is 42 and {eab} 

Utility is 40.  

 
Figure 5.  local prefix tree and header table of „c‟ 

 

 

 

 

 
Figure 6.  local prefix tree, header table and Utility List 

of „cd‟ 

 

V. COMPARISON AND DISCUSSION 

 

In the previous research like Two-Phase, FHM, mHUI-

Miner scan the database two times. Database scanning 

cost is high so it consumes must time for database 

scanning. Two-Phase, Up-Growth algorithm generates a 

number of candidate itemset then find out the actual 

high utility item set so it degrades the performance of 

the algorithms. In HUI-Miner, candidate item set is not 

generated but it performs the costly join operation of 

utility list. Recently, mHUI-Miner has been proposed 

that resolve the problem of candidate set generation and 

minimize the number of the join operation. For the 

problem of High Utility Item-set Mining mHUI- Miner 

outperforms the previous. Still, in mHUI-Miner database 

scan multiple times so it is time-consuming while in our 

proposed algorithm it scans the database only once. In 

mHUI-Miner to generate global tree perform the sorting 

operation on items for each transaction to insert. While 

in our proposed method it is just read the item as per 

order mentioned by index vector. It also observed that in 

mHUI-Miner construct procedure each entry in the one 

utility list is compared with all entry of another utility 

list so the complexity of construct procedure in the 

mHUI-Miner is the O (mn) where m & n is the number 

of transaction entries in the utility list of item-set x and 

item-set y. But due to transaction aggregation the size of 

utility list can be reduced, so the complexity of our 

proposed construct algorithm is at most O (m + n). 

Roughly the overall time complexity of mHUI-Miner 

algorithm is O(2TdbI
2
mn) while over proposed algorithm 

is O(TdbI
2 
(m+n)) where Tdb is the database scanning cost, 

I is the number of items, m & n are the number of 

transaction entries in utility lists.  From the above fact 

that the proposed algorithm is faster than the mHUI-

Miner. 

 

The proposed algorithm yet to be implemented in java 

platform and will perform the experiment on Retails, 

Chainstore, Accident, Mushroom datasets for various 

utility threshold. It will prove that our proposed 

algorithm is better in terms of execution time than the 

previous mHUI-Miner.  

 

VI. CONCLUSION 

 

We find out that most of HUIM algorithm consume the 

time for database scanning, unnecessary generating 

candidate set. Some algorithms consume memory and 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 
144 

time for construction of un-necessary utility list and 

joining this utility lists. Performance of the High Utility 

Item-set mining algorithm can be improved by, reducing 

database scanning cost, frequency, and efficient Pruning 

Strategy. We propose the algorithm that scans the 

database only once. Also, propose the transaction 

aggregation that reduces the size of utility list and fast 

construction operation for joining the utility list.  

 

Roughly the overall time complexity of mHUI-Miner 

algorithm is O(2TdbI
2
mn) while over proposed algorithm 

is O(TdbI
2 
(m+n)) where Tdb is the database scanning cost, 

I is the number of items, m & n are the number of 

transaction entries in utility lists. From the said 

theoretical analysis we conclude that our proposed 

algorithm outperforms the previous algorithm with 

respect to execution time.   
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